样本方差的无偏估计

🔖 math
🔖 probability and statistics
Author

Guangyao Zhao

Published

Aug 26, 2022

样本方差的无偏估计公式如下:

\[ \begin{array}{l} \mathrm{E}\left[S^{2}\right]=\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]=\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\left(X_{i}-\mu\right)-(\bar{X}-\mu)\right)^{2}\right]\\ =\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\left(X_{i}-\mu\right)^{2}-2(\bar{X}-\mu)\left(X_{i}-\mu\right)+(\bar{X}-\mu)^{2}\right)\right]\\ =\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-\frac{2}{n}(\bar{X}-\mu) \sum_{i=1}^{n}\left(X_{i}-\mu\right)+\frac{1}{n}(\bar{X}-\mu)^{2} \sum_{i=1}^{n} 1\right]\\ =\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-\frac{2}{n}(\bar{X}-\mu) \sum_{i=1}^{n}\left(X_{i}-\mu\right)+\frac{1}{n}(\bar{X}-\mu)^{2} \cdot n\right]\\ =\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-\frac{2}{n}(\bar{X}-\mu) \sum_{i=1}^{n}\left(X_{i}-\mu\right)+(\bar{X}-\mu)^{2}\right]\\ =\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-\frac{2}{n}(\bar{X}-\mu) \cdot n \cdot(\bar{X}-\mu)+(\bar{X}-\mu)^{2}\right]\\ =\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-2(\bar{X}-\mu)^{2}+(\bar{X}-\mu)^{2}\right]\\ =\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-(\bar{X}-\mu)^{2}\right]\\ =\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right]-\mathrm{E}\left[(\bar{X}-\mu)^{2}\right]\\ =\sigma^{2}-\mathrm{E}\left[(\bar{X}-\mu)^{2}\right] \end{array} \]

所以只有样本均值和真值均值相等的时候,样本方差的均值才和真值方差相等。由于样本的随机性,样本均值取值不一定,所以上式的 \(\mathrm{E}\left[(\bar{X}-\mu)^{2}\right]\) (即样本期望的方差)可能并不为 \(0\)

\[ \begin{aligned} E(\bar{X}-\mu)^{2} &=E(\bar{X}-E[\bar{X}])^{2}=\operatorname{var}(\bar{X}) \\ &=\operatorname{var}\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right) \\ &=\frac{1}{n^{2}} \operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right) \\ &=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right) \\ &=\frac{n \sigma^{2}}{n^{2}} \\ &=\frac{\sigma^{2}}{n} \end{aligned} \]

综上,方差的无偏估计为:

\[ E\left[S^{2}\right]=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{\sigma^2}{n-1} \]

但是当 \(n\) 大到一定程度的时候 \(E\left[S^{2}\right]\) 是整体方差的相合估计。