实对称矩阵的性质

Guangyao Zhao

2022-07-19

Contents

实对称矩阵是正定矩阵	1
实对称矩阵的特征向量正交	2
相似对角化,,,,,,,,,,,,,,,	2

实对称矩阵是正定矩阵

对称矩阵:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 10 \end{bmatrix}$$

的平方为:

$$A^{T}A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 10 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 10 \end{bmatrix} = \begin{bmatrix} 14 & 36 & 49 \\ 36 & 93 & 126 \\ 49 & 126 & 173 \end{bmatrix}$$

注意: 以上并不是严格的数学证明, 只是便于理解的简单计算。因为是平方, 所以不可以出现矩阵为小于 0 的元素, 再加上是实对称矩阵, 所以最后结果 > 0, 即为正定矩阵。

实对称矩阵的特征向量正交

若 x_1 和 x_2 是对称矩阵 A 的特征向量,则: $Ax_1=\lambda_1x_1$ 且 $Ax_2=\lambda_2x_2$ 。如果 $\lambda_1\neq\lambda_2$,则 $x_1^Tx_2=0$ 。证明过程如下:

- 1. 假设 $z=x_1^TAx_2$, 因为 z 是标量,所以 $z^T=z$, 也就是说 $x_2^TA^Tx_1=x_1^TAx_2$
- 2. 因为 $A^T = A$, 所以 $x_2^T A x_1 = x_1^T A x_2$
- 3. 因为 $Ax_1=\lambda_1x_1$ 且 $Ax_2=\lambda_2x_2$,所以 $x_2^T\lambda_1x_1=x_1^T\lambda_2x_2$,即 $\lambda_1x_2^Tx_1=\lambda_2x_1^Tx_2$
- 4. 其中 $x_1^Tx_2=x_2^Tx_1$, 且 $\lambda_1\neq\lambda_2$ 。所以 $x_1x_2=0$,即特征向量正交

相似对角化

实对称矩阵一定是正交矩阵,即含有n个线性无关的特征矩阵。所以实对称矩阵可以对角化。

把 A 的特征向量 P_1, P_2, \cdots, P_n 排成矩阵 P 的列, 运用分块运算技术, 把矩阵 A 作为一个整块, 或者一个常数; 把矩阵 P 中每个列看做一个块 (或者元素), 运算如下:

$$\begin{split} AP &= A\left[P_1, P_2, \cdots, P_n\right] = \left[AP_1, AP_2, \cdots, AP_n\right] \\ &= \left[\lambda_1 P_1, \lambda_2 P_2, \cdots, \lambda_3 P_n\right] \\ &= \left[P_1, P_2, \cdots, P_n\right] \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} = P \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \end{split}$$

显然将最后的矩阵左乘一个 P 矩阵的逆, 把 P 消简成单位阵, 就得到了由特征值构成的对角阵 A, 即 $P^{-1}AP=\Lambda$ 成立。其中 P 是原坐标系下的基向量矩阵(但不一定是单位基向量矩阵)