欧拉法

Guangyao Zhao

2022-12-17

Contents

前向欧拉法 .		•									 		 							1
后向欧拉法 .		•				 					 		 							2
梯形法		•				 					 		 							2
改进欧拉法 .						 				•	 		 							2
在开始前,统一-	-下数	学ì	吾言	:																
• 自变量: x_n																				

因变量: y(x_n)

齿叉量: g(x_n) 迭代微小距离: h

• 导函数: $f(x_n,y(x_n))$

• 精确值: $y(x_n)$

• 估计值: *y_n*

目标是,知道初始值 $y(x_n)$,和导函数 $f(x_n,y(x_n))$,求解 x_n+h 处的 $y(x_{n+1})$ 值。

前向欧拉法

$$y(x_{n+1}) = y(x_n) + h \ast f(x_n, y(x_n))$$

即,知道初始值 $y(x_n)$ 和导数 $f(x_n,y(x_n))$,即可计算出 $y(x_{n+1})$ 。

后向欧拉法

$$y(x + h) = y(x) + h * f(x, y(x + h))$$

我们的目的是求 y(x+h), 结果后向欧拉法在求解其值的时候反而需要他自己, 所以后向欧拉法并不能直接求解, 需要按照以下步骤:

$$\begin{split} y^{(0)}(x_{n+1}) &= y(x_n) + h * f(x_n, y(x_n)) \\ y^{(1)}(x_{n+1}) &= y(x_n) + h * f(x_{n+1}, y^{(0)}(x_{n+1})) \\ y^{(2)}(x_{n+1}) &= y(x_n) + h * f(x_{n+1}, y^{(1)}(x_{n+1})) \\ &\vdots \\ y^{(n)}(x_{n+1}) &= y(x_n) + h * f(x_{n+1}, y^{(n-1)}(x_{n+1})) \end{split}$$

直到 $y^{(n)}(x_{n+1})$ 收敛为止。

梯形法

无论是显示法还是隐式法的精度都不高,为了得到更高的精度,就想到了将两者结合,也就是梯形法: 由 Figure 3 可知,梯形的精度要比显示法和隐式法都高,计算公式:

$$y(x_{n+1}) = y(x_n) + \frac{h}{2} \left(f(x_n, y(x_n)) + f(x_{n+1}, y(x_{n+1})) \right)$$

改进欧拉法

由 Sec. 可知, 梯形法综合了显示欧拉和隐式欧拉可得到更高的精度, 但是一个问题是其中的隐式欧拉法并不容易直接求解。 改进欧拉法的计算方法如下:

预测:
$$y_p = \overline{y_{n+1}} = y(x_n) + f(x_n, y_n)$$
 校正: $y_c = y_{n+1} = y(x_n) + f(x_{n+1}, \overline{y_{n+1}})$ 计算: $y_{n+1} = y(x_n) + \frac{h}{2} \left(f(x_n, y(x_n)) + f(x_{n+1}, y_{n+1}) \right)$

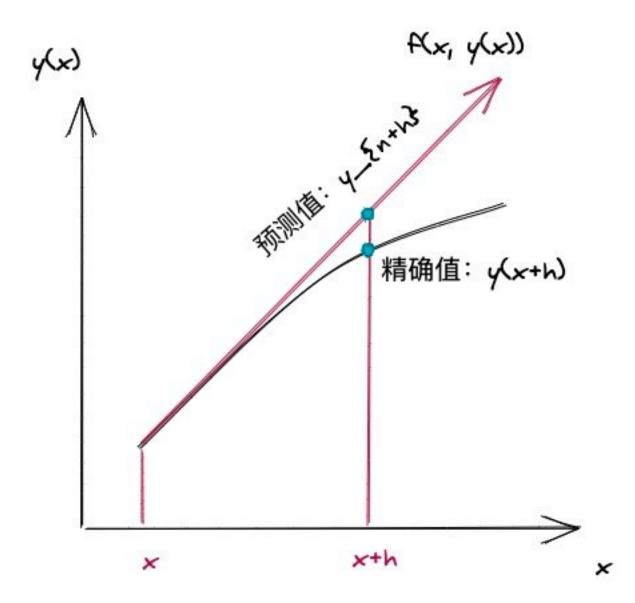


Fig. 1: 前向 (显式) 欧拉法

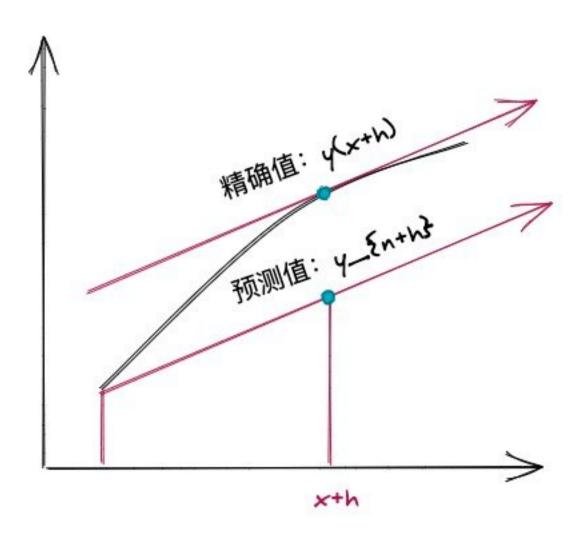


Fig. 2: 后向 (隐式) 欧拉法

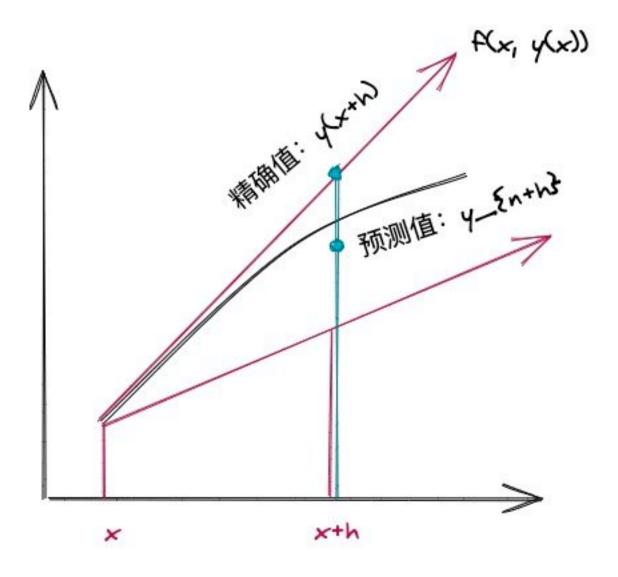


Fig. 3: 梯形法